opmo

Administrators
  • Content count

    995
  • Joined

  • Last visited

  • Days Won

    127

opmo last won the day on May 23

opmo had the most liked content!

2 Followers

About opmo

Contact Methods

  • Website URL
    https://opusmodus.com
  • Skype
    opusmodus

Profile Information

  • Gender
    Male

Recent Profile Visitors

2,356 profile views
  1. Opusmodus 1.2.22226
  2. Update to GEN-CONTROLLER function: The GEN-CONTROLLER function generates controller values in a given span (total length) with a defined time for each of the values (<value> <time>). The count of the sent messages is the sum of the time values equal to the span value. For example span 1/4 with time 1/128 will produce 32 values. (setf values (gen-sine 32 4 1.0)) (gen-controller 1/4 values) => ((64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (64 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128)) The :min and :max option allows you to control the minimum and maximum value of the sent messages: (gen-controller 1/4 values :min 20 :max 80) => ((50 1/128) (71 1/128) (80 1/128) (71 1/128) (50 1/128) (29 1/128) (20 1/128) (29 1/128) (50 1/128) (71 1/128) (80 1/128) (71 1/128) (50 1/128) (29 1/128) (20 1/128) (29 1/128) (50 1/128) (71 1/128) (80 1/128) (71 1/128) (50 1/128) (29 1/128) (20 1/128) (29 1/128) (50 1/128) (71 1/128) (80 1/128) (71 1/128) (50 1/128) (29 1/128) (20 1/128) (29 1/128)) If the values count is less than the sum of the time values equal to the span then the last value of the list is used to complete the count. (gen-controller 1/2 values) => ((64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (64 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128) (19 1/128)) The loop option will trim the values to complete the time count: (gen-controller 1/2 values :loop t) => ((64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (64 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (64 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128) (64 1/128) (108 1/128) (127 1/128) (108 1/128) (63 1/128) (19 1/128) (0 1/128) (19 1/128)) Example with user defined times: (setf length '(q = s = = = h)) (gen-controller 2 values :time length) => ((64 1/4) (108 1/4) (127 1/16) (108 1/16) (63 1/16) (19 1/16) (0 1/2) (19 1/4) (64 1/4) (108 1/16) (127 1/16) (108 1/16) (64 1/16)) GEN-CONTROLLER inside the DEF-SCORE instrument instance: :controllers (45 (gen-controller 1/2 values :loop t)) Score Example: (progn (setf vec1 (gen-sine 1024 3 1)) (setf vec2 (gen-sine 1024 4 1)) (setf vec3 (gen-sine 1024 10 0.5)) (def-score ctrl (:key-signature 'chromatic :time-signature '(8 4) :tempo 78) (ctrl :omn '((w c4 c4) (w cs5 cs5) (w d4 d4) (w eb5 eb5) (d eb5)) :sound 'gm :channel 1 :program 'String-Ensemble-1 :volume (gen-controller 10 vec1 :min 20 :max 100) :tuning '((0 0.25) (-0.5 0) (0 0.5) (0.5 0.75) (0.5)) :pan (assemble-seq (gen-controller 5 vec2) (gen-controller 5 vec1)) :controllers (1 (assemble-seq '(127 5) (gen-controller 5 vec1)))) )) Best wishes, JP
  3. Just use numbers to pitch, lengths etc... conversion. I would advise you to check the System Function documentation and play with the examples a bit :-) Example: (setf fib (interval-modus (fibonacci 0 23) :mod 12)) (setf pitch (integer-to-pitch fib)) => (c4 cs4 cs4 d4 eb4 f4 gs4 cs4 a4 bb4 g4 f4 c4 f4 f4 bb4 eb4 cs4 e4 f4 a4 d4 b4 cs4) (setf length (vector-to-length 1/16 1 2 fib)) => (1/16 1/16 1/16 1/16 1/16 1/16 1/8 1/16 1/8 1/8 1/8 1/16 1/16 1/16 1/16 1/8 1/16 1/16 1/16 1/16 1/8 1/16 1/8 1/16) (make-omn :length length :pitch pitch) => (s c4 cs4 cs4 d4 eb4 f4 e gs4 s cs4 e a4 bb4 g4 s f4 c4 f4 f4 e bb4 s eb4 cs4 e4 f4 e a4 s d4 e b4 s cs4)
  4. There are endless possibilities: Example 1 (let* ((l '(0 1 -1 0)) (r l)) (loop repeat 3 collect (x+b l (car (setf r (gen-rotate -1 r)))) into bag finally (return (append (list l) bag)))) => ((0 1 -1 0) (1 2 0 1) (-1 0 -2 -1) (0 1 -1 0)) Example 2 (gen-eval 4 '(x+b (rnd-order '(0 1 -1 0)) (rnd-pick '(0 1 -1 0)))) => ((0 0 1 -1) (-1 -2 0 -1) (1 2 0 1) (-1 0 -2 -1)) Example 3 (progn (setf l '(0 1 -1 0)) (gen-eval 4 '(setf l (x+b (rnd-order l) (rnd-pick '(0 1 -1 0)))))) => ((1 0 2 1) (2 3 2 1) (1 0 1 2) (1 0 2 1))
  5. You define the sound set for the virtual instrument and not for the DAW. Opusmodus supports any CC and naturally continuously sending of messages, for that you use the :controller keyword. The :tuning is not a controller. If the span is 1/4 and the resolution is 1/128 then 32 values are need it. (/ 1/4 1/128) => 32 Test1: (length (gen-controller 1/4 (gen-sine 120 3 1))) => 32 (length (gen-controller 1/4 (gen-sine 1200 3 1))) => 32 (find-sum (mapcar '2~ (gen-controller 1/4 (gen-sine 120 3 1)))) => 1/4 (find-sum (mapcar '2~ (gen-controller 1/4 (gen-sine 1200 3 1)))) => 1/4 If the span is 2 and the resolution is 1/128 then 256 values are need it. (/ 2 1/128) => 256 Test2: (length (gen-controller 2 (gen-sine 256 3 1))) => 256 (length (gen-controller 2 (gen-sine 1200 3 1))) => 256 (find-sum (mapcar '2~ (gen-controller 2 (gen-sine 256 3 1)))) => 2 (find-sum (mapcar '2~ (gen-controller 2 (gen-sine 1200 3 1)))) => 2 You can control the time (resolution): (gen-controller 4 (gen-sine 1024 4 1) :time '(1/2 1/4 1/128 1/128)) => ((64 1/2) (65 1/4) (67 1/128) (68 1/128) (70 1/2) (71 1/4) (73 1/128) (74 1/128) (76 1/2) (77 1/4) (79 1/128) (80 1/128) (82 1/2) (83 1/4) (85 1/128) (86 1/128) (88 1/2) (89 1/4) (91 1/128) (92 1/128) (93 11/64)) I make some changes (more control) to the function. Release soon with updated doc.
  6. New functions: HALF-SINE, HALF-SAWTOOTH, HALF-TRIANGLE, HALF-SQUARE JOIN-ATTRIBUTES, DISJOIN-ATTRIBUTES HALF-SINE The HALF-SINE function generates a sequence of vectors that describe and simulate the characteristics of a half sine wave. First the GEN-SINE: (gen-sine 32 1 0.5) Now the HALF-SINE: (half-sine 32 0.5) With control over resolution (the length of the wave), frequency and amplitude (and additional control over phase and modulation) this function can be a remarkably effective tool for creating gestural forms in pitch, rhythm, dynamics and structure. Examples: With the shortcut ⌃1 (menu: Plot/Numbers) as a guide it's possible to experiment with shapes and forms before applying these to musical parameters. (half-sine 120 1.0 :phase 90) In the example below the keyword :modulation is applied and its values are generated by the GEN-SINE function. (half-sine 120 1.0 :phase 90 :modulation (gen-sine 120 1 0.2)) In the example below the amplitude parameter '(0.5 0.2 0.1) has three values. These represent a sequence of alternating amplitudes. (half-sine 120 '(0.5 0.2 0.1)) In this final example the keyword :phase is used to produce a different start point (90) in the 360 degree range. (half-sine 120 '(0.5 0.2 0.1) :phase 90) In this final example the GEN-SINE the amplitude values are generated by the HALF-SINE function: (gen-sine 120 5 (half-sine 120 1.0 :phase 180)) (gen-sine 120 5 (half-sine 240 1.0 :phase 180)) Here below there's a clear example of how alternating amplitude values can affect the wave output when the vectors are mapped to pitches. (vector-to-pitch '(g3 g5) (gen-sine 120 32 (half-sine 120 1.0 :phase 180)) HALF-TRIANGLE The HALF-TRIANGLE function generates a sequence of vectors that describe and simulate the characteristics of a half triangle wave. First the GEN-TRIANGLE: (gen-triangle 32 1 0.5) Now the HALF-TRIANGLE: (half-triangle 32 0.5) With control over resolution (the length of the wave), frequency and amplitude (and additional control over phase and modulation) this function can be a remarkably effective tool for creating gestural forms in pitch, rhythm, dynamics and structure. Examples: With the shortcut ⌃1 (menu: Plot/Numbers) as a guide it's possible to experiment with shapes and forms before applying these to musical parameters. (half-triangle 120 1.0 :phase 45) In the example below the keyword :modulation is applied and its values are generated by the GEN-TRIANGLE function. (half-triangle 120 1.0 :phase 45 :modulation (gen-triangle 120 1 0.2)) In the example below the amplitude parameter '(0.5 0.2 0.1) has three values. These represent a sequence of alternating amplitudes. (half-triangle 120 '(0.5 0.2 0.1)) In this final example the keyword :phase is used to produce a different start point (90) in the 360 degree range. (half-triangle 120 '(0.5 0.2 0.1) :phase 90) In this final example the GEN-TRIANGLE the amplitude values are generated by the HALF-TRIANGLE function: (gen-triangle 120 5 (half-triangle 120 1.0 :phase 180)) (gen-triangle 120 5 (half-triangle 240 1.0 :phase 180)) Here below there's a clear example of how alternating amplitude values can affect the wave output when the vectors are mapped to pitches. (vector-to-pitch '(g3 g5) (gen-triangle 120 32 (half-triangle 120 1.0 :phase 180)) HALF-SQUARE The HALF-SQUARE function generates a sequence of vectors that describe and simulate the characteristics of a half square wave. First the GEN-SQUARE: (gen-square 32 1 0.5) Now the HALF-SQUARE: (half-square 32 0.5) With control over resolution (the length of the wave), frequency and amplitude (and additional control over phase and modulation) this function can be a remarkably effective tool for creating gestural forms in pitch, rhythm, dynamics and structure. Examples: With the shortcut ⌃1 (menu: Plot/Numbers) as a guide it's possible to experiment with shapes and forms before applying these to musical parameters. (half-square 120 1.0 :phase 45) In the example below the keyword :modulation is applied and its values are generated by the GEN-SQUARE function. (half-square 120 1.0 :phase 90 :modulation (gen-square 120 1 0.7)) In the example below the amplitude parameter '(0.5 0.2 0.1) has three values. These represent a sequence of alternating amplitudes. (half-square 120 '(0.5 0.2 0.1)) In this final example the keyword :phase is used to produce a different start point (90) in the 360 degree range. (half-square 120 '(0.5 0.2 0.1) :phase 90) In this final example the GEN-SQUARE the amplitude values are generated by the HALF-SQUARE function: (gen-square 120 5 (half-square 120 1.0 :phase 180)) (gen-square 120 5 (half-square 240 1.0 :phase 180)) Here below there's a clear example of how alternating amplitude values can affect the wave output when the vectors are mapped to pitches. (vector-to-pitch '(g3 g5) (gen-square 120 32 (half-square 120 1.0 :phase 180)) HALF-SAWTOOTH The HALF-SAWTOOTH function generates a sequence of vectors that describe and simulate the characteristics of a half sawtooth wave. First the GEN-SAWTOOTH: (gen-sawtooth 32 1 0.5) Now the HALF-SAWTOOTH: (half-sawtooth 32 0.5) With control over resolution (the length of the wave), frequency and amplitude (and additional control over phase and modulation) this function can be a remarkably effective tool for creating gestural forms in pitch, rhythm, dynamics and structure. Examples: With the shortcut ⌃1 (menu: Plot/Numbers) as a guide it's possible to experiment with shapes and forms before applying these to musical parameters. (half-sawtooth 120 1.0 :phase 90) In the example below the keyword :modulation is applied and its values are generated by the GEN-SAWTOOTH function. (half-sawtooth 120 1.0 :phase 90 :modulation (gen-sawtooth 120 1 0.7)) In the example below the amplitude parameter '(0.5 0.2 0.1) has three values. These represent a sequence of alternating amplitudes. (half-sawtooth 120 '(0.5 0.2 0.1)) In this final example the keyword :phase is used to produce a different start point (90) in the 360 degree range. (half-sawtooth 120 '(0.5 0.2 0.1) :phase 90) In this final example the GEN-SAWTOOTH the amplitude values are generated by the HALF-SAWTOOTH function: (gen-sawtooth 120 5 (half-sawtooth 120 1.0 :phase 180)) (gen-sawtooth 120 5 (half-sawtooth 240 1.0 :phase 180)) Here below there's a clear example of how alternating amplitude values can affect the wave output when the vectors are mapped to pitches. (vector-to-pitch '(g3 g5) (gen-sawtooth 120 32 (half-sawtooth 120 1.0 :phase 180)) DISJOIN-ATTRIBUTES The function DISJOIN-ATTRIBUTES separates a combined articulations into a list of its individual attributes. (disjoin-attributes 'leg+ponte) => (leg ponte) (disjoin-attributes 'leg+ponte+stacc) => (leg ponte stacc) JOIN-ATTRIBUTES The function JOIN-ATTRIBUTES merges a list of attributes into one articulation. (join-attributes '(leg ponte)) => leg+ponte (join-attributes '(leg+ponte stacc)) => leg+ponte+stacc Fix to OMN-REPLACE :articulation Best wishes, JP
  7. Logic, Reaktor, Kontakt and VSL Ensemble Pro works beautifully with Opusmodus. The Mozarteum is using Opusmodus with Reaper as well :-)
  8. The :tuning has no timing resolution control. To control the timing you must use :controller keyword.
  9. The new PPRINT-SCORE function will print the bar numbers in each of the instruments: (pprint-score (compile-score 'add-triangle :output :score)) Result: (def-score add-triangle (:title "Waves Add-Triangle" :composer "OPMO" :copyright "© 2014 Opusmodus" :key-signature 'chromatic :layout '(:brace (:flexible-treble rh) (:flexible-bass lh) :name "" :abbr "" :flexible-clef t) :rewrite-lengths 't :time-signature '((1 4 1) (3 8 1) (5 16 1) (3 8 2) (1 4 3) (5 16 2) (3 8 1) (1 4 1) (5 16 1) (3 8 2) (5 16 2) (1 4 2) (3 8 1) (1 4 1) (3 8 1) (7 16 1) (5 16 2) (7 16 1) (1 4 1) (5 16 1) (1 4 3) (3 8 1) (5 16 1) (3 8 2) (1 4 3) (5 16 2) (3 8 1) (1 4 1) (5 16 1) (3 8 2) (5 16 2) (1 4 2) (3 8 1)) :tempo '120) (rh :omn '(#|1|# (s g1 ff gs1 mf a1 p b1 mf) #|2|# (e c2 p cs2 ff s d2 p e2 mf) #|3|# (e f2 s fs2 ff g2 p a2 ff) #|4|# (e b2 ff c3 s cs3 eb3) #|5|# (e e3 mf f3 ff s fs3 a3 mf) #|6|# (s bb3 b3 ff c4 mf e4 ff) #|7|# (s e4 p f4 ff mf b4 p) #|8|# (s b4 mf ff mf fs5) #|9|# (s fs5 p e f5 mf s p cs6) #|10|# (s cs6 mf c6 b5 ff e g6 mf) #|11|# (s g6 ff e e f6 s g6) #|12|# (s g6 p ff g6 fs6) #|13|# (s g6 ff g6 e s fs6) #|14|# (e fs6 mf s e p s ff) #|15|# (s fs6 p e s e mf) #|16|# (s fs6 ff e s s f6 mf) #|17|# (e fs6 ff s mf p f6 mf) #|18|# (s f6 ff fs6 fs6 mf f6 ff) #|19|# (s f6 ff fs6 p ff f6 p) #|20|# (e f6 p s ff e fs6 mf s f6) #|21|# (s f6 ff mf p ff) #|22|# (s f6 ff mf e p ff) #|23|# (e f6 ff f6 f6 p s mf) #|24|# (s f6 f6 e ff s) #|25|# (s f6 p f6 e mf s) #|26|# (e f6 p mf s p e) #|27|# (s f6 p f6 e6 f6 mf) #|28|# (s f6 ff e6 p e eb6 s f6 ff) #|29|# (s f6 mf e6 ff d6 f6 p) #|30|# (s f6 mf e6 d6 ff f6) #|31|# (s f6 mf e6 p cs6 ff f6 p) #|32|# (e f6 p mf s cs6 ff f6 mf) #|33|# (e f6 s p cs6 fs6 ff) #|34|# (e f6 ff e6 p s bb5 f6 mf) #|35|# (e e6 p b5 ff s f5 mf eb6 p) #|36|# (s bb5 mf fs5 p cs5 mf a5 ff) #|37|# (s e5 p c5 mf gs4 p d5 mf) #|38|# (s bb4 ff fs4 p d4 g4) #|39|# (s e4 ff e d4 mf s b3 p eb4) #|40|# (s cs4 ff bb3 p gs3 mf e c4) #|41|# (s a3 ff e p b3 s gs3 mf) #|42|# (s bb3 ff c4 d4 mf b3 ff) #|43|# (s cs4 p eb4 e f4 mf s eb4 ff) #|44|# (e e4 mf s fs4 e gs4 p s fs4 mf) #|45|# (s g4 p e a4 s bb4 ff e a4 mf) #|46|# (s bb4 p e c5 ff s cs5 p c5) #|47|# (e cs5 p s eb5 e5 eb5 mf) #|48|# (s e5 ff fs5 g5 mf fs5 p) #|49|# (s g5 mf gs5 a5 p mf) #|50|# (e bb5 p s b5 e c6 s)) :channel 1 :sound 'gm :program 'acoustic-grand-piano :volume 90 :pan 64) (lh :omn '(#|1|# (s gs1 p g1 b0 mf a0 ff) #|2|# (e c1 p cs1 mf s d1 p e1 mf) #|3|# (e a1 p s g1 mf fs1 f1) #|4|# (e b1 ff c2 s cs2 mf eb2) #|5|# (e e2 ff f2 mf s fs2 a2 p) #|6|# (s e3 mf c3 p b2 mf bb2 ff) #|7|# (s b3 mf f4 f4 ff fs4) #|8|# (s b3 ff p mf fs4 p) #|9|# (s cs5 mf e a5 s p gs5 mf) #|10|# (s g5 ff eb6 p d6 mf e cs6 ff) #|11|# (s g5 p e a5 mf g5 ff s) #|12|# (s fs5 p g5 mf g5 g5 ff) #|13|# (s g5 ff mf e p s fs5 ff) #|14|# (e fs5 p s ff e p s mf) #|15|# (s fs5 p e s mf e p) #|16|# (s f5 mf e fs5 ff s s mf) #|17|# (e f5 ff s fs5 mf fs5 fs5) #|18|# (s f5 e5 p e5 f5 ff) #|19|# (s f5 ff e5 e5 mf f5 ff) #|20|# (e f5 ff s fs5 mf e f5 ff s mf) #|21|# (s f5 ff mf ff f5) #|22|# (s f5 ff f5 e e) #|23|# (e f5 mf ff p s ff) #|24|# (s f5 p ff e p s) #|25|# (s f5 mf ff e mf s ff) #|26|# (e f5 mf f5 s p e mf) #|27|# (s f5 p f5 fs5 f5 ff) #|28|# (s f5 ff fs5 p e g5 s f5) #|29|# (s f5 mf f5 e5 p d5 mf) #|30|# (s f5 gs5 fs5 p f5 mf) #|31|# (s f5 p fs5 a5 ff f5) #|32|# (e f5 ff p s a5 f5 mf) #|33|# (e fs5 s f5 p ff cs5) #|34|# (e f5 ff fs5 p s c6 ff f5) #|35|# (e e5 ff b4 s f4 mf eb5 p) #|36|# (s bb4 mf d5 p g5 ff b4 mf) #|37|# (s e4 p gs4 c5 fs4 mf) #|38|# (s g3 p d3 mf fs3 p bb3) #|39|# (s e3 mf e fs3 ff s a3 p f3 mf) #|40|# (s c3 ff gs2 mf bb2 p e cs3) #|41|# (s b2 p e a2 ff mf s gs2) #|42|# (s b2 gs2 p bb2 mf c3) #|43|# (s eb3 f3 p e eb3 mf s cs3 ff) #|44|# (e fs3 ff s gs3 e fs3 s e3 p) #|45|# (s g3 p e a3 ff s bb3 mf e a3) #|46|# (s c4 ff e cs4 s c4 mf bb3 ff) #|47|# (e e4 p s eb4 eb4 cs4 ff) #|48|# (s e4 mf fs4 ff g4 p fs4 ff) #|49|# (s a4 mf p bb4 mf b4 ff) #|50|# (e bb4 p s a4 e gs4 s)) :channel 1 :sound 'gm :program 'acoustic-grand-piano :volume 90 :pan 64)) But you don't need to use the function PPRINT-SCORE. After the evaluation of the score just press ⌥⌘⇥
  10. I just tested the Ableton Live and Opusmodus Live Coding system - no problems here, but only on 1 port. added 6 minutes later Any program (Ableton Live, Logic etc...) can be controlled by OM. It is important to make a DEF-SOUND-SET file for your system first.
  11. Using length symbols is even better :-) (init-seed 434) (setf pitch '(a3 b3 c4 d4 a3 b3 c4 d4)) (setf theme1 (make-omn :pitch (gen-eval 12 '(rnd-octaves '(c1 c7) (rnd-order pitch))) :length '(e - - - = - - -) :velocity '(ff) :span :pitch )) (setf theme2 (make-omn :pitch (gen-eval 12 '(rnd-order pitch)) :length '(-e s = -e - - = - -) :velocity '(ff) :span :pitch )) (setf theme3 (make-omn :pitch (gen-eval 12 '(rnd-order pitch)) :length '(-e - = - - - = -) :velocity '(ff) :span :pitch )) (setf theme4 (make-omn :pitch (gen-eval 12 '(rnd-order pitch)) :length '(-e - - = - - - 3e = =) :velocity '(ff) :span :pitch )) (def-score temp ( :key-signature 'chromatic :time-signature '(4 4) :composer "Alain Jamot" :copyright "Copyright © 2017 alain jamot" :tempo 120 :flexible-clef t :ignore-velocity t ) (piano :omn theme1 :channel 1 :sound 'gm :program 'acoustic-grand-piano ) (flute :omn theme2 :channel 2 :sound 'gm :program 'flute ) (violin :omn theme3 :channel 3 :sound 'gm :program 'violin ) (marimba :omn theme4 :channel 4 :sound 'gm :program 'marimba ) )
  12. You might find the function OMN-RECONSTRUCT useful in your work: (omn-reconstruct '(e c4 mp stacc -3/16 -1/2 e. c4 p ord -1/8)) => (e c4 mp stacc -e. -h e. c4 p ord -e) (omn-reconstruct '(e c4 mp stacc -3/16 -1/2 e. c4 p ord -1/8 (leg q c4 d4 e4))) => (e c4 mp stacc -e. -h e. c4 p ord -e q c4 leg d4 leg e4) (omn-reconstruct '((e c4 p stacc -3/16) (-1/2 e. c4 ord) (-1/8 (leg q c4 d4 e4)))) => ((e c4 p stacc -e.) (-h e. c4 ord) (-e q c4 leg d4 leg e4)) (omn-reconstruct '((e c4 p stacc -3/16) (-1/2 e. c4 ord) (-1/8 (leg q c4 d4 e4))) :velocityp t) => ((e c4 p stacc -e.) (-h e. c4 p ord) (-e q c4 p leg d4 leg e4))
  13. Note: It Is better to add the velocity with MAKE-OMN. You can hide the the velocity symbols with :ignore-velocity t As you are using repeat (length) you can :span the lengths to :pitch (count). I made the example a bit longer using GEN-EVAL function :-) (init-seed 434) (setf pitch '(a3 b3 c4 d4 a3 b3 c4 d4)) (setf theme1 (make-omn :pitch (gen-eval 12 '(rnd-octaves '(c1 c7) (rnd-order pitch))) :length '(1/8 -1/8 -1/8 -1/8 1/8 -1/8 -1/8 -1/8) :velocity '(ff) :span :pitch )) (setf theme2 (make-omn :pitch (gen-eval 12 '(rnd-order pitch)) :length '(-1/8 1/16 1/16 -1/8 -1/8 -1/8 1/8 -1/8 -1/8) :velocity '(ff) :span :pitch )) (setf theme3 (make-omn :pitch (gen-eval 12 '(rnd-order pitch)) :length '(-1/8 -1/8 1/8 -1/8 -1/8 -1/8 1/8 -1/8) :velocity '(ff) :span :pitch )) (setf theme4 (make-omn :pitch (gen-eval 12 '(rnd-order pitch)) :length '(-1/8 -1/8 -1/8 1/8 -1/8 -1/8 -1/8 1/24 1/24 1/24) :velocity '(ff) :span :pitch )) (def-score temp ( :key-signature 'chromatic :time-signature '(4 4) :composer "Alain Jamot" :copyright "Copyright © 2017 alain jamot" :tempo 120 :flexible-clef t :ignore-velocity t ) (piano :omn theme1 :channel 1 :sound 'gm :program 'acoustic-grand-piano ) (flute :omn theme2 :channel 2 :sound 'gm :program 'flute ) (violin :omn theme3 :channel 3 :sound 'gm :program 'violin ) (marimba :omn theme4 :channel 4 :sound 'gm :program 'marimba ) )
  14. Alain, could you give me an example (input, output) of what you are trying to do. Why would you like to use separate channel for each of the articulations. What samples (virtual instrument) you are using.