Jump to content

opmo

Administrators
  • Content Count

    1,831
  • Joined

  • Last visited

Everything posted by opmo

  1. It is not a bug. I can revert the change, I too prefer length display without the center line - 'Behind Bars' by Elaine Gould.
  2. I agree, stemlets are better representation of the time signature. I will ask James if we could add this to our system.
  3. – Function name changes: LENGTH-DIVIDE2 to LENGTH-SUBDIVISION LENGTH-DIVIDE3 to LENGTH-SYNCOPATE – Function update: LENGTH-DIVIDE – changes to arguments. LENGTH-SUBDIVISION – changes to arguments. LENGTH-SYNCOPATE – changes to arguments. POLYGON-RHYTHM – enable fixed sides polygon. – Note: If you used any of the functions: LENGTH-DIVIDE, LENGTH-DIVIDE2 or LENGTH-DIVIDE3 in your scores, please check new documents in order to make the necessary correction. – New: Enable or disable the DO-VERBOSE macro. (defparameter *do-verbose* nil "Enable or disable traces printed by do-verbose.") length-divide This function is able to divide number of lengths to a given division value. The :set and :ignore option increases the control for the desired result. When processing the omn-form sequence an optional third value allows you to fill intervalic steps (a root transposition) to new length values derived from the divisions. (setf rhy '(1/4 1/4 1/4 1/4)) (length-divide '(2 2) rhy) => (1/8 1/8 1/4 1/4 1/8 1/8) (length-divide '(2 4) rhy) => (1/4 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/16 1/4) Example: (length-divide '(1 2) '(1/4 -1/8 1/16 1/16 -1/32 -3/32 1/8 1/1) :seed 34) => (1/4 -1/8 1/16 1/32 1/32 -1/32 -3/32 1/8 1) In the example above only 1 length is divided by 2 - that is the 1/16. In the example below 4 lengths are divided by 2. (length-divide '(4 2) '(1/4 -1/8 1/16 1/16 -1/32 -3/32 1/8 1/1) :seed 34) => (1/8 1/8 -1/8 1/16 1/32 1/32 -1/32 -3/32 1/16 1/16 1/2 1/2) (length-divide '(1 2) '(1/4 -1/8 1/16 1/16 -1/32 -3/32 1/8 1/1) :set 'min :seed 34) => (1/4 -1/8 1/32 1/32 1/16 -1/32 -3/32 1/8 1) (length-divide '(1 4) '(1/4 -1/8 1/16 1/16 -1/32 -3/32 1/8 1/1) :set 1/8 :seed 34) => (1/4 -1/8 1/16 1/16 -1/32 -3/32 1/32 1/32 1/32 1/32 1) (length-divide '((2 3) (1 2)) '((1/4 -1/8 1/16 1/16) (1/32 -3/32 1/8 1/1)) :ignore 'max :seed 45) => ((1/4 -1/8 1/48 1/48 1/48 1/48 1/48 1/48) (1/64 1/64 -3/32 1/8 1)) (length-divide '((2 4) (1 2)) '((q -e s s) (s -e. e w)) :set 'max :ignore 1 :seed 65) => ((1/16 1/16 1/16 1/16 -1/8 1/16 1/64 1/64 1/64 1/64) (1/16 -3/16 1/16 1/16 1)) OMN: (setf mat1 '(q c4 d4 e4 f4 g4 a4 b4)) (length-divide '(3 4) mat1 :seed 45) => (s d4 bb3 cs4 b3 cs4 eb4 c4 e4 q s g4 e4 eb4 fs4 q g4 a4 b4) Symbol 'r will apply repeat function: (length-divide '(3 4 r) mat1 :seed 45) => (s c4 c4 c4 c4 d4 d4 d4 d4 q e4 s f4 f4 f4 f4 q g4 a4 b4) Here we use a set of interval values at the end of the division list: (length-divide '(3 4 (13 0 1 13)) mat1 :seed 45) => (s cs5 c4 cs4 cs5 eb5 d4 eb4 eb5 q e4 s fs5 f4 fs4 fs5 q g4 a4 b4) (setf mat2 '((e c4 p e4 mp g4 he c5 p) (q c4 f c4 cs4 mp - d5 p d5) (q cs5 mf = - - cs5 p =))) (length-divide '((1 4) (2 4) (2 5)) mat2 :seed 34) => ((e c4 p e4 mp t a4 f4 gs4 fs4 he c5 p) (q c4 f s b3 cs4 bb3 d4 q cs4 mp - d5 p s c5 e5 cs5 eb5) (q cs5 mf cs5 - - 5q eb5 p b4 c5 d5 eb5 c5 eb5 b4 d5 c5)) In the example below we assign three series of division values to variables s1, s2 and s3: (setf s1 '(3 4 (6 12 18 24)) s2 '(3 4 ((13 1 13 0) (13 0 7 1) r)) s3 '(2 5 ((13 0 13 0 13) ?)) ) (length-divide (list s1 s2 s3) mat2 :seed 34) => ((e c4 p t bb4 mp e5 bb5 e6 cs5 g5 cs6 g6 et fs5 p c6 fs6 c7) (q c4 f s cs5 cs4 cs5 c4 q cs4 mp - s eb6 p d5 a5 eb5 d5 d5 d5 d5) (5q d6 mf cs5 d6 cs5 d6 q cs5 - - cs5 p 5q d5 eb5 c5 b4 d5)) length-subdivision This function is able to divide a list of lengths into a number of subdivisions derived from a given length segment value. The :type and :position option increases the control for the desired result. When processing the omn-form sequence an optional third value allows you to fill intervalic steps (a root transposition) to new length values derived from the divisions. This function is a more sophisticated version of LENGTH-DIVIDE. It produces fascinating variants on the simplest of note-lengths, as can be seen below. (setf rhy '(1/4 1/4 1/4 1/4)) (length-subdivision '(2 1/8) rhy) => (1/8 1/8 1/8 1/8 1/8 1/8 1/8 1/8) position 's (start): (length-subdivision '(2 1/16) rhy :position 's) => (1/16 1/16 1/8 1/16 1/16 1/8 1/16 1/16 1/8 1/16 1/16 1/8) position 'e (end): (length-subdivision '(2 1/16) rhy :position 'e) => (1/8 1/16 1/16 1/8 1/16 1/16 1/8 1/16 1/16 1/8 1/16 1/16) type 'r (rest), position 'e (end): (length-subdivision '(2 1/16) rhy :type 'r :position 'e) => (-1/8 1/16 1/16 -1/8 1/16 1/16 -1/8 1/16 1/16 -1/8 1/16 1/16) type 'r (rest), position 's (end): (length-subdivision '(2 s) rhy :type 'r :position 's) => (1/16 1/16 -1/8 1/16 1/16 -1/8 1/16 1/16 -1/8 1/16 1/16 -1/8) type at random, rest or note : (length-subdivision '(2 s) rhy :type '? :position 's) => (1/16 1/16 -1/8 1/16 1/16 -1/8 1/16 1/16 -1/8 1/16 1/16 1/8) position and type at random: (length-subdivision '(1 e) rhy :type '? :position '? :seed 34) => (1/16 1/8 1/16 1/8 1/8 -1/8 1/8 1/8 1/8) (length-subdivision '((2 5q) (1 3q)) rhy :type '? :position 's :seed 34) => (1/20 1/20 3/20 1/12 -1/6 1/20 1/20 3/20 1/12 -1/6) (length-subdivision '((2 5q) (1 3q) (1 e) (1 s)) rhy :seed 34) => (1/20 1/20 3/20 1/12 1/12 1/12 1/8 1/8 3/16 1/16) Example: (setf rhy2 '((1/4 1/4 1/4 1/4) (1/4 1/4 1/4 1/4))) (length-subdivision '(1 e) rhy2 :seed 34) => ((1/8 1/8 1/16 1/8 1/16 1/8 1/8 1/8 1/8) (1/16 1/8 1/16 1/8 1/8 1/8 1/8 1/8 1/8)) (length-subdivision '((1 e) (1 3q)) rhy2 :seed 34) => ((1/8 1/8 1/12 1/12 1/12 1/8 1/8 1/6 1/12) (1/16 1/8 1/16 1/6 1/12 1/8 1/8 1/6 1/12)) (length-subdivision '(((1 e)) ((1 3q))) rhy2 :seed 34) => ((1/8 1/8 1/16 1/8 1/16 1/8 1/8 1/8 1/8) (1/12 1/12 1/12 1/6 1/12 1/12 1/6 1/6 1/12)) (length-subdivision '((3 3q) (1 e)) '((q -e e h) (s e. q h)) :seed 65) => ((1/12 1/12 1/12 -1/8 1/8 1/12 1/12 1/12 1/4) (1/16 3/16 1/8 1/8 1/8 1/12 1/12 1/12 1/8)) (length-subdivision '(((3 3q)) ((1 e))) '((q -e e h) (s e. q h)) :seed 65) => ((1/12 1/12 1/12 -1/8 1/8 1/12 1/12 1/12 1/4) (1/16 1/16 1/8 1/16 1/8 1/16 1/8 3/8)) (length-subdivision '(((2 3q)) ((1 e))) '((q -e e h) (s e. q h)) :type '? :seed 65) => ((1/12 1/12 1/12 -1/8 1/8 1/12 1/12 -1/3) (1/16 -1/16 1/8 1/8 1/8 1/8 3/8)) OMN: (setf mat1 '(q c4 d4 e4 f4 g4 a4 b4)) (length-subdivision '(1 e) mat1 :seed 45) => (s cs4 e b3 s d4 e cs4 e4 s f4 e fs4 s d4 e fs4 eb4 f4 a4 bb4 gs4 bb4 a4) The symbol 'r (third value) will apply repeat function: (length-subdivision '(1 e r) mat1 :seed 45) => (s c4 e s e d4 d4 s e4 e s e f4 f4 g4 g4 a4 a4 b4 b4) Here we define the intervals (third value): (length-subdivision '(1 e (13 0 13 0)) mat1 :seed 45) => (s cs5 e c4 s cs5 e eb5 d4 s f5 e e4 s f5 e fs5 f4 gs5 g4 bb5 a4 c6 b4) (length-subdivision '(4 s (13 0 13 0)) mat1 :seed 45) => (s cs5 c4 cs5 c4 eb5 d4 eb5 d4 f5 e4 f5 e4 fs5 f4 fs5 f4 gs5 g4 gs5 g4 bb5 a4 bb5 a4 c6 b4 c6 b4) (length-subdivision '(2 3q (13 0 13 0)) mat1 :type '(r n) :seed 45 :position '(e s s s e s s)) => (-3q cs5 c4 eb5 d4 eb5 f5 e4 - fs5 f4 fs5 - gs5 g4 bb5 a4 bb5 c6 b4 -) (setf mat2 '((e c4 p e4 mp g4 he c5 p) (q c4 f c4 cs4 mp - d5 p d5) (q cs5 mf = - - cs5 p =))) (length-subdivision '((1 e (13 0 13 0)) (2 e (13 0 13 0)) (2 3q (13 0 13 0))) mat2 :type '? :seed 34) => ((e c4 p e4 mp g4 q cs6 p e c5 q cs6) (e cs5 f c4 cs5 c4 -3q d5 mp cs4 -q e eb6 p d5 eb6 d5) (-s e cs5 mf -s e d6 cs5 -q - 3e d6 p 3q cs5 d6 3e cs5 e d6 cs5)) (length-subdivision '(((1 e (13 0 13 0))) ((2 s (13 0 13 0))) ((2 3q r))) mat2 :type '? :seed 34) => ((e c4 p e4 mp g4 q cs6 p e c5 q cs6) (e cs5 f s c4 cs5 -e s cs5 c4 e d5 mp s cs4 d5 -q -s eb6 p d5 - eb6 d5 eb6 d5) (3q cs5 mf cs5 cs5 cs5 cs5 cs5 -q - 3q cs5 p cs5 - - cs5 cs5)) In the example below we assign three series of values to variables s1, s2 and s3: (setf s1 '(2 e (6 12 18 24)) s2 '(1 3q ((13 1 13 0) (13 0 7 1) r)) s3 '(3 5q ((13 0 13 0 13) ?)) ) (length-subdivision (list s1 s2 s3) mat2 :seed 23) => ((e c4 p 3e bb4 mp 3q e5 e cs6 cs5 p cs6 q.) (e fs4 f c5 3q cs5 cs4 cs5 5h mp 5q c4 g4 c4 -q e c4 p c4 3q d5 3h cs4) (e g5 mf cs6 3q d6 3h d5 -q - 5q d6 p cs5 cs5 5h e d6 cs5)) length-syncopate The function LENGTH-SYNCOPATE is a valuable way of bringing more rhythmic interest into a length list. The usual idea of syncopating rhythm is to 'choke' certain attacks so that the attack is delayed or pre-empted. (setf rhy '(1/4 1/4 1/4 1/4)) (length-syncopate '(1 4) rhy) => (1/4 3/16 1/16 1/4 1/4) (length-syncopate '(2 4) rhy) => (1/16 3/16 1/4 3/16 1/16 1/4) Example: (length-syncopate '(1 4) '(1/4 -1/8 1/16 1/16 -1/8 1/8 1/1) :seed 34) => (1/4 -1/8 1/16 1/64 3/64 -1/8 1/8 1) In the example above only 1 length is divided by 4 (1, 3) - that is the 1/16. In the example below 2 values are divided by 3: (1, 2) and (2, 1). (length-syncopate '(2 3) '(1/4 -1/8 1/16 1/16 -1/8 1/8 1/1) :seed 34) => (1/4 -1/8 1/48 1/24 1/16 -1/8 1/8 2/3 1/3) (length-syncopate '(1 4) '(1/4 -1/8 1/16 1/16 -1/8 1/8 1/1) :set 1/8 :seed 34) => (1/4 -1/8 1/16 1/16 -1/8 1/32 3/32 1) Example with :set for each list: (length-syncopate '((2 3) (1 4)) '((1/4 -1/8 1/16 1/16) (1/32 -3/32 1/8 1/1)) :set '(min 1/8) :seed 45) => ((1/4 -1/8 1/24 1/48 1/24 1/48) (1/32 -3/32 3/32 1/32 1)) (length-syncopate '((2 3) (1 5)) '((q -e s s) (s -e. q h)) :set 'max :ignore 'h :seed 65 :omn t) => ((3h 3q -e s 3s 3e) (s -e. 5q 5w h)) OMN: (setf mat '(q c4 d4 e4 f4 g4 a4 b4)) (length-syncopate '(3 4) mat :seed 12) => (s b3 e. cs4 q d4 e. fs4 s d4 q f4 g4 a4 e. bb4 s c5) Here we use a set of interval values: (length-syncopate '(3 4 ((13 0) (0 14) (1 13))) mat :seed 23) => (s cs5 e. c4 d4 s e5 q e4 f4 s gs4 e. gs5 q a4 b4) (setf mat2 '((e c4 p e4 mp g4 he c5 p) (q c4 f c4 cs4 mp - d5 p d5) (q cs5 mf = - q cs5 stacc p = =)) (length-syncopate '((1 3 (-3 6)) (2 4 (6 0)) (2 5 (11 13))) mat2 :seed 34) => ((e c4 p e4 mp 3e 3q cs5 he c5 p) (q c4 f s fs4 e. c4 q cs4 mp - e. gs5 p s d5 q) (q cs5 mf cs5 - 5w c6 stacc 5q d6 stacc q cs5 p 5q c6 5w d6 q cs5)) polygon-rhythm In the next three examples below we use a list of fixed polygon sides (non-symmetrical): (circle-rhythm-plot (polygon-rhythm '(1 6 10) 16 1) :points 16) To rotate the polygon we change the starting point value: (circle-rhythm-plot (polygon-rhythm '(1 6 10) 16 2) :points 16) (circle-rhythm-plot (polygon-rhythm '(0 2 5 7 10 12 13 15 16 18 19 21 23) 24 0) :points 24 :value 1/24) Best wishes, JP
  4. In the next version you will be able to disable the DO-VERBOSE macro: (defparameter *do-verbose* nil "Enable or disable traces printed by do-verbose.")
  5. Here it is: (sequencer:sequencer-stop *audition-sequencer*) JP
  6. Possible solution to 'fill' the added values: :repeat and :ornament This shouldn't be difficult to implement.
  7. – Additions:ADD-TEXT-ATTRIBUTS – Optional attribute type: :sticky and :non-sticky– Fixed:Typo error in 'GM Instrument Set.lisp' file. Best wishes, Janusz
  8. Implemented in version 1.3.24912 Example: Attributes with optional :non-sticky type: (add-text-attributes ;; motif start signs '(m1 "m1" :non-sticky) '(m2 "m2" :non-sticky) '(m3 "m3" :non-sticky) ;; strings '(am-steg "am steg") ; sticky '(ruhig "ruhig") ) '(q c4 m1+leg d4 q c4 m1+leg d4)
  9. Could you send me some example (with score) of the problem.
  10. All this can be done (and more) with PS, DEF-INSTRUMENT-SET, EDIT-EVENTS and UNFOLD functions.
  11. More about function name changes go to 'History': https://opusmodus.com/history/
  12. Yes, the function name has change to GET-AMBITUS. You will need to make a few correction to your code sorry for the inconvenience.
  13. Could you explain a bit more, I don't understand the use of score window and MIDI playback in the same time.
  14. opmo

    maxmsp and lisp?

    Opusmodus use CCL 1.12, here is the link to CCL 1.12 Clozure/ccl GITHUB.COM Clozure Common Lisp. Contribute to Clozure/ccl development by creating an account on GitHub.
  15. – New function: POLYGON-RHYTHM – Generates a symmetrical polygon to a given n-gon. – Update: LENGTH-WEIGHT – :swallow keyword added. LENGTH-REST-SERIES – omn-form and :swallow keyword added. LENGTH-TO-REST – omn-form and :swallow keyword added. – Documents: Howto Score/Rhythm/Polygon Rhythm.opmo Note: Select 'Check for Updates...' from Opusmodus app menu to get the latest version. POLYGON-RHYTHM This function returns a symmetrical polygon to a given n-gon (sides number) with circle points (denominator) and a given staring point. In this example we use 3-gon in a 16 point circle with the starting point 0: (polygon-rhythm 3 16 0) => (1/16 -1/16 -1/16 -1/16 1/16 -1/16 -1/16 -1/16 -1/16 -1/16 -1/16 -1/16 1/16 -1/16 -1/16 -1/16) Same as above with :legato t added: (polygon-rhythm 3 16 0 :legato t) => (1/4 1/2 1/4) The 3-gon in a 16 point circle with the starting point 0 will produce 7 symmetrical 3-gon’s: Example with start point 5: (polygon-rhythm 3 16 5) => (-1/16 -1/16 -1/16 -1/16 -1/16 1/16 -1/16 -1/16 -1/16 -1/16 -1/16 1/16 -1/16 -1/16 -1/16 1/16) (circle-rhythm-plot (polygon-rhythm 3 16 5) :points 16) Examples: In the following example we create 8 bars of a ‘Drum Set’ rhythm. First we assign the ‘GM Percussion’ names to variables: (setf bd (read-map *gm-percussion* 'acoustic-bass-drum)) (setf sd (read-map *gm-percussion* 'Acoustic-Snare)) (setf ht (read-map *gm-percussion* 'High-Tom)) (setf hh (read-map *gm-percussion* 'Open-Hi-hat)) Next we create 4 polygon rhythms: (setf bd-gon (polygon-rhythm 3 16 0 :pitch bd :seed 5)) (setf sd-gon (polygon-rhythm 2 16 1 :pitch sd :seed 45)) (setf ht-gon (polygon-rhythm 2 16 5 :pitch ht :seed 45)) (setf hh-gon (polygon-rhythm 5 16 2 :pitch hh :seed 5)) With the CIRCLE-RHYTHM-PLOT function you can visualise how the rhythms are working together: (circle-rhythm-plot (list bd-gon sd-gon ht-gon hh-gon) :points 16) Let’s hear the result above, using PS function and ‘GM Instrument Set’ with a 8 times loop: (ps 'gm :ds-bd (list (gen-eval 8 'bd-gon)) :ds-sd (list (gen-eval 8 'sd-gon)) :ds-ht (list (gen-eval 8 'ht-gon)) :ds-hh (list (gen-eval 8 'hh-gon)) :tempo 120) Same as above but without a seed value: (ps 'gm :ds-bd (list (gen-eval 8 '(polygon-rhythm 3 16 0 :pitch bd))) :ds-sd (list (gen-eval 8 '(polygon-rhythm 2 16 1 :pitch sd))) :ds-ht (list (gen-eval 8 '(polygon-rhythm 2 16 5 :pitch ht))) :ds-hh (list (gen-eval 8 '(polygon-rhythm 5 16 2 :pitch hh))) :tempo 120) In the next example we add a few more percussion instruments. The '? start symbol means the start point is selected at random: 0 to 15. (progn (setf bd (read-map *gm-percussion* 'Acoustic-Bass-Drum)) (setf sd (read-map *gm-percussion* 'Acoustic-Snare)) (setf ht (read-map *gm-percussion* 'High-Tom)) (setf hh (read-map *gm-percussion* 'Open-Hi-hat)) (setf lb (read-map *gm-percussion* 'Low-Bongo)) (setf hb (read-map *gm-percussion* 'High-Bongo)) (setf mhc (read-map *gm-percussion* 'Mute-Hi-Conga)) (setf lc (read-map *gm-percussion* 'Low-Conga)) (ps 'gm :ds-bd (list (gen-eval 16 '(polygon-rhythm 3 16 0 :pitch bd))) :ds-sd (list (gen-eval 16 '(polygon-rhythm 2 16 1 :pitch sd))) :ds-ht (list (gen-eval 16 '(polygon-rhythm 2 16 5 :pitch ht))) :ds-hh (list (gen-eval 16 '(polygon-rhythm 5 16 2 :pitch hh))) :rhy (list (gen-eval 16 '(polygon-rhythm 5 16 '? :pitch lb)) (gen-eval 16 '(polygon-rhythm 4 16 '? :pitch hb)) (gen-eval 16 '(polygon-rhythm 7 16 '? :pitch mhc)) (gen-eval 16 '(polygon-rhythm 7 16 '? :pitch lc))) :tempo 120) )
  16. Great piano study! Thank you for sharing
  17. Second example, this time with code. VSL: Soprano Sax, Steinway D, Upright Bass and Jazz DrumSet. (progn (init-seed 3578) (setf bd '(c2 cs2)) (setf sd '(d2 ds2 e2 f2 fs2 g2 gs2 a2 bb2 b2)) (setf lt '(c5 cs5 d5 ds5 e5 f5 fs5 g5 gs5 a5 bb5 b5)) (setf cc '(g7 c7)) (setf rc '(c4 cs7 d7 ds7 e7 f7)) (setf hh '(c4 cs4 d4 ds4 e4)) (setf ds-vel '(ff f fff)) (setf bd-gon (gen-eval 33 '(polygon-rhythm 3 16 0 :pitch (rnd-sample 32 bd) :velocity (rnd-sample 32 ds-vel)))) (setf sd-gon (gen-eval 32 '(polygon-rhythm 2 16 '? :pitch (rnd-sample 32 sd) :velocity (rnd-sample 32 ds-vel)))) (setf lt-gon (gen-eval 32 '(polygon-rhythm 2 16 '? :pitch (rnd-sample 32 lt) :velocity (rnd-sample 32 ds-vel)))) (setf cc-gon (gen-eval 32 '(polygon-rhythm 5 24 '? :pitch (rnd-sample 32 cc) :velocity (rnd-sample 32 ds-vel)))) (setf rc-gon (gen-eval 32 '(polygon-rhythm 5 24 '? :pitch (rnd-sample 32 rc) :velocity (rnd-sample 32 ds-vel)))) (setf hh-gon (gen-eval 33 '(polygon-rhythm 5 16 '? :pitch (rnd-sample 32 hh) :velocity (rnd-sample 32 ds-vel)))) (setf hexachord '(d4 eb4 fs4 g4 a4 bb4)) (setf chords (assemble-seq (gen-eval 16 '(polygon-rhythm 3 16 '? :pitch (gen-chord-series hexachord hexachord :type '? :width '(30 24 36 12) :segment t))) (gen-eval 4 '(polygon-rhythm 5 16 '? :pitch (gen-chord-series hexachord hexachord :type '? :width '(30 24 36 12) :segment t))) (gen-eval 7 '(polygon-rhythm 4 16 '? :pitch (gen-chord-series hexachord hexachord :type '? :width '(30 24 36 12) :segment nil) :legato t)) (gen-eval 5 '(polygon-rhythm 3 16 '? :pitch (gen-chord-series hexachord hexachord :type '? :width '(30 24 36 12) :segment t))))) (setf piano (assemble-seq '((-1) (-1) (-1) (-1)) (rnd-octaves '(c2 b6) (subseq chords 4 31)) '(-1))) (setf ssax (make-omn :length (assemble-seq '((-1) (-1) (-1) (-1) (-1) (-1) (-1)) (polygon-rhythm 6 16 '?) (polygon-rhythm 7 16 '?) (polygon-rhythm 9 16 '?) (polygon-rhythm 3 8 '?) (polygon-rhythm 16 16 '?) (polygon-rhythm 24 24 '?) (polygon-rhythm 8 16 '?) (polygon-rhythm 11 16 '?) (polygon-rhythm 5 16 '?) (polygon-rhythm 16 24 '?) (polygon-rhythm 6 8 '?) (polygon-rhythm 4 16 2) (polygon-rhythm 5 16 2) (polygon-rhythm 7 16 2) (polygon-rhythm 9 16 0) (polygon-rhythm 13 16 0) (polygon-rhythm 16 16 0) (polygon-rhythm 21 24 0) (polygon-rhythm 22 24 0) (polygon-rhythm 20 24 0) (polygon-rhythm 20 24 0) (polygon-rhythm 16 24 0) (polygon-rhythm 4 16 2) '((-1) (-1)) ) :pitch (ambitus 'soprano-sax (pitch-transpose (vector-to-pitch '(fs3 fs4) (mod-sine-waves 5 36 4 0.3 :modulation (gen-sine 120 5 0.4))) (pitch-variant (melodize (omn :pitch chords))))) :velocity '(ff))) (setf bass-line (assemble-seq '((-1) (-1)) (gen-eval 31 '(polygon-rhythm 9 16 '? :pitch (ambitus '(e1 g4) (pitch-variant (pitch-transpose -24 (rnd-air :type :pitch)))) :velocity '(fff))))) (ps 'vsl :ssax (list ssax) :grand (list piano) :cb (list bass-line) :ds-bd (list bd-gon) :ds-sd (list sd-gon) :ds-lt (list lt-gon) :ds-cc (list cc-gon) :ds-rc (list cc-gon) :ds-hh (list hh-gon) :tempo 120 :play :lc :title "Dada Quartet - EXP.2 (c) 2019 OPMO") (init-seed nil) ) Best wishes, Janusz P.S. I am almost there with the new release.
  18. The additional swallow keyword (default t) will be part of the next release. (length-weight '((q c4 d4 e4 f4 g4 a4 b4) (q c4 d4 e4 f4 g4 a4 b4)) :weight '((3 1) (5 2)) :swallow nil :seed 875) => ((q c4 d4 e4 f4 g4 - a4) (q c4 d4 - e4 f4 g4 -)) ;; With :swallow T (default) (length-weight '((q c4 d4 e4 f4 g4 a4 b4) (q c4 d4 e4 f4 g4 a4 b4)) :weight '((3 1) (5 2)) :seed 875) => ((q c4 d4 e4 f4 g4 - b4) (q c4 d4 - f4 g4 a4 -))
  19. The forthcoming POLYGON-RHYTHM function will allow you to think and compose in a clear symmetrical structures. The great amount of keywords (OPMO stile) makes this algorithm very powerful. This is a short example using POLYGON-RHYTHM exclusively. Instruments: VSL Tenor Sax and Jazz Drumset.
×
×
  • Create New...