Search the Community
Showing results for tags 'markov'.
-
Here is an example of generation of harmonic progression with Opusmodus using chords rules defined with a transition table. The technique presented here uses the concept of tonal degrees, but it is important to note that as you will see later in this article, this concept can be pushed quite far and quite outside the traditional tonal system. First, we define some transition rules from degree to degree: (setf transition '((1 (4 1) (5 1) (6 2)) (2 (5 2) (4 1)) (3 (4 1)) (4 (5 1) (2 1)) (5 (1 3) (6 2) (4 1))
- 5 replies
-
- markov
- progression
-
(and 1 more)
Tagged with:
-
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;gen-chained-sym-vals.by-markov;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; special-symm-sequences ;;; have look at the possible parameters (&key) ;;; it's generates symm-structures via MARKOV ;;; and the could be "chained" between generations ;;; also with symm.structures... like: (also look at CARTER's work) ;;; => ((1 2 5 8 5 2 1) (3 1 2 2 2 1 3) (8 1 3 1 8) (3 1 2 2 2 1 3) (1 2 5 8 5 2 1)) ;;; chains:
-
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; WHEN PATTERN-MATCH => T ;;; THEN MARKOV PRODUCES THE NEXT VALUES ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; subfunctions (defun pattern-match (liste pattern) (loop for z in liste with cnt = 0 with pattern_cnt = 0 when (or (equal (nth cnt pattern) z) (equal '? (nth cnt pattern))) do (incf pattern_cnt) and do (incf cnt) else do (setq cnt (setq pattern_cnt 0)) when (equal pattern_cnt (length pattern)) collect 't into bag and do (return (car bag)))) (defun test.pm.omn (seq pattern) (let
-
a concrete example (but musical-nonsense)... of a TRANSITION produced by a special markov-program 1) functions/subfuctions ;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun add-transition-weight (transition-list value add-weight) (loop for j in transition-list collect (append (list (first j)) (loop repeat (1- (length j)) for cnt = 1 then (incf cnt) when (equal (first (nth cnt j)) value) collect (list (first (nth cnt j)) (+ add-weight (second (nth cnt j)))) else collect (nth
-
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;another little markov-game => markov with "global-tendency" ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;a "neutral table with 4 values" (setq transitions '((1 (1 1) (2 1) (3 1) (4 1)) (2 (1 1) (2 1) (3 1) (4 1)) (3 (1 1) (2 1) (3 1) (4 1)) (3 (1 1) (2 1) (3 1) (4 1)) (4 (1 1) (2 1) (3 1) (4 1)))) ;;;subfunctions (defun filter-first-last (n sequence) (car (filter-last n sequence))) (defun substitute-transition-wei
-
;;; little markov-game: ;;; gen-markov => analyze the output => produce new rules => gen-markov ;;; make x-times the list-plot and you will see how the system most of the times ;;; comes to a "constant STATE" (defun self-analyzing/generating-markov (transitions size generations) (loop repeat generations with list = (gen-markov-from-transitions transitions :size size :start 1) append (setq list (gen-markov-from-transitions (gen-markov-transitions list) :size size :start (car (last list)))
-
i'm working on a program including "markov"... so i coded this small FUNCTION to SUBSTITUTE markov-rules-values (because in my "project" i'm generating a feedback on the markov-rules (after a pattern-match)). i know it could be coded a lot smarter but it works. have fun! andré ;;;;FUNCTION (defun substitute-transition-value (transition-list value-old value-new) (loop for j in transition-list collect (loop for i in j when (numberp i) append (substitute value-new value-old (list i)) when (listp i)
-
hi all, i'm looking for a markov-function who's working with a transition-table (like in OPMO), but who is "context-sensitive". the table could be something like that (but nonsense-example here): (setq transition-table '((1 (2 1) (3 1)) (2 ((1 3) 1) (2 1)) (3 (1 1) (4 1)) (1 3 (2 1) ((3 1) 1)))) is there any "hidden-function" in OPUSMODUS, or have i code it for myself? ...it makes "musically" more sense to work with context- then with single-value-decisions... thanx andr
-
hi all, i coded a little markov-program who changes the LEVEL-size if necessary to generate the number of values you want exactly. it would be nice if someone could check/test the IDEA, and if it's correct and makes sense :-) the markov starts on LEVEL 3 and tries to generate a number of output-levels with its TRANSITION-rules (level-3-rules), if it's possible (=generating the size) everything's fine. but if it's not possible, then the programm changes on LEVEL-2-rules ... if this is also not possible (to generate the size) then it changes to LEVEL 1...
-
;;;;small function -> create symmetrical lists (palindrom) with markov (for generating half-seq) (setf transition '((1 (4 1) (5 1) (-6 2)) (2 (5 2) (4 1)) (3 (4 1)) (4 (5 1) (2 1)) (5 (1 3) (-6 2) (4 1)) (-6 (4 1) (3 2)) (7 (1 1) (-6 1)))) ;;;FUNCTION (defun gen-sym-markov (&key seq-length transition-matrix) (let ((vals 0)) ;falls seq-length = liste, werden positive werte gezählt und neu ;seq-length (= angepasst, formatunabhängig) (if (listp seq-length) (setq seq-length (car (last (loop for i in seq-length