# AM

Members

792

1. ## length-compensate

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; a little function to compensate special-rhy-changes ;;; to 1/4-note structure... (or all :compensating-to -values) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;; best format-solution was 1/32 => '(1 32) etc... otherwise ;;; i get in trouble with 1/8 = 4/32 - what is mathematicclay ;;; correct - but bringing BUGS to the output ;;; if anybody could transform things '(2/32) to '(2 32) or ;;; '(3/12) to '(3 12) would be nice, i coudn't code it. this ;;; things are necessary because the function makes decicions ;;; bewtween the denominators, so there sould be constant!!!! ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun length-compensate2 (liste &key (compensating-to '(1 4))) (butlast (loop for event in (loop for i in (append liste (list (list (* -1 (first compensating-to)) (/ 1 (second compensating-to))))) collect (list (first i) (/ 1 (second i)))) with nenner with modulo with event_stack with add_duration = 0 with corr_event when (or (null event_stack) (= (second event_stack) (second event))) do (setq add_duration (+ add_duration (abs (first event))) event_stack event corr_event nil) else do (progn (setq nenner (/ (/ 1 (second event_stack)) (second compensating-to)) modulo (mod add_duration nenner)) (if (/= modulo 0) (setq corr_event (* (* -1 (- nenner modulo)) (second event_stack)))) (setq add_duration (abs (first event)))) when (not (equal corr_event 'nil)) collect corr_event and do (setq corr_event nil) collect (* (first event) (second event)) do (setq event_stack event)))) ;example-1 (length-compensate2 (loop repeat 5 collect (rnd-pick '((1 16) (-1 16) (2 32) (5 7) (13 9) (4 20) (6 20) (3 20) (5 16))))) ;exampl-2 (length-compensate2 (loop repeat 5 collect (rnd-pick '((1 16) (-1 16) (2 32) (5 7) (13 9) (4 20) (6 20) (3 20) (5 16)))) :compensating-to '(1 8))
2. ## lisp-help needed

i know, but only mathematically!! -> you remember the problem with gen-stacc? => we discussed that with rangarajan? for some functions it's necessary that 2/20 will not be "reduced" to 1/20 => https://opusmodus.com/forums/topic/528-gen-stacc-question/#comment-1446
3. ## lisp-help needed

thanx, but i see my idea don't work with that... concrete: i want to split 2/20 into exactly '(2 20) function with numerator/denominator it will be '(1 10) - not what i need also with (explode '2/20) => (1 / 1 0) is there any solution?
4. ## lisp-help needed

hi all i need a little lisp-help... i want to split things like this perhaps 'an3 into '(a n 3) is there a way? thanx andré

thanx!!! a.
6. ## LENGTH-REDUCE ?

a short - and perhaps stupid - question... what's the idea for this function, useful for ...? practical purpose? thanx for a short hint!
7. ## gen-stacc => variants

thank you, i just like it :-) know everythings seems complete...
8. ## gen-stacc => variants

;;;;; ;;;;; gen-stacc2 and gen-stacc3 => usefull tools to build little variants ;;;; subfunctions => also possible with prob? (defun weighted-random (list) (loop for item in list with rand-num = (random (loop for x in list sum (second x))) for add = (second item) then (+ add (second item)) when (< rand-num add) return (first item))) (defun weighted-t/nil (on-weight) (let ((off-weight (- 1 on-weight))) (weighted-random (list (list 't on-weight) (list 'nil off-weight))))) ;;;; mainfunctions (defun gen-stacc (liste) (if (numberp liste) (if (> (numerator liste) 1) (list (/ 1 (denominator liste)) (/ (* -1 (- (numerator liste) 1)) (denominator liste))) (list liste)) (loop for i in liste append (if (> (numerator i) 1) (list (/ 1 (denominator i)) (/ (* -1 (- (numerator i) 1)) (denominator i))) (list i))))) (gen-stacc '(1/32 7/32 9/32 17/32)) (gen-stacc '(3/8)) ;; (defun gen-stacc2 (n liste &key (stacc-chance 1)) (loop for i in liste when (and (> i n) (equal (weighted-t/nil stacc-chance) 't)) append (list n (* -1 (- (abs i) n))) else collect i)) (gen-stacc2 1/32 '(1/32 7/32 9/32 17/32) :stacc-chance 0.5) ;; (defun gen-stacc3 (n-liste liste &key (stacc-chance 1)) (loop for i in liste with n do (setq n (rnd-pick n-liste)) when (and (> i n) (equal (weighted-t/nil stacc-chance) 't)) append (list n (* -1 (- (abs i) n))) else collect i)) (gen-stacc3 '(1/32 5/32) '(1/32 7/32 5/32 9/32 17/32 3/8 9/32 17/32) :stacc-chance 0.5) ;;;;;;
9. ## gen-markov-from-transitions-with-tendency

a concrete example (but musical-nonsense)... of a TRANSITION produced by a special markov-program 1) functions/subfuctions ;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun add-transition-weight (transition-list value add-weight) (loop for j in transition-list collect (append (list (first j)) (loop repeat (1- (length j)) for cnt = 1 then (incf cnt) when (equal (first (nth cnt j)) value) collect (list (first (nth cnt j)) (+ add-weight (second (nth cnt j)))) else collect (nth cnt j))))) ;;;;;;;;;;;;;;;;;;;;;;;;;; (defun count-repetitions (value-list) (let ((seq (append value-list (list 'nil)))) (loop repeat (1- (length seq)) with count = 1 for cnt1 = 0 then (incf cnt1) for cnt2 = 1 then (incf cnt2) when (equal (nth cnt1 seq) (nth cnt2 seq)) do (incf count) when (not (equal (nth cnt1 seq) (nth cnt2 seq))) collect count and do (setq count 1)))) ;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun eliminate-repetitions (liste) (let ((liste (append liste (list 'nil)))) (loop repeat (1- (length liste)) with cnt = 0 when (not (equal (nth cnt liste) (nth (+ 1 cnt) liste))) collect (nth cnt liste) do (incf cnt)))) (eliminate-repetitions '(1 1 2 3 4 4 4 1 1 2)) ;;;;;;;;;;;;;;;;;;;;;;;;;;;; (defun gen-markov-from-transitions-with-tendency (transitions size generations value &key (add-weight 1) (start (first (first transitions)))) (loop repeat generations with list = (gen-markov-from-transitions transitions :size size :start start ) with weight = add-weight with weight-growth = 0 do (setq transitions (add-transition-weight transitions value weight)) append (setq list (gen-markov-from-transitions transitions :size size :start (filter-first-last 1 list))) do (incf weight (incf weight-growth)))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 2) example and possible implementation => create a TRANSITION to value 3 (=> to pitch eb4) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;evaluate a few times, to check it;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (list-plot ;;non-neutral-table (setq integers (gen-markov-from-transitions-with-tendency '((1 (1 1) (2 4) (3 1)) (2 (1 1) (4 1) (3 3)) (3 (1 4) (3 5) (4 3)) (4 (1 1) (3 2) (4 3))) 10 20 3 :add-weight 3)) :point-radius 0 :style :fill) #| ;;another example with different mapping (list-plot ;;non-neutral-table (setq integers (gen-markov-from-transitions-with-tendency '((1 (1 1) (2 4) (3 1)) (2 (1 1) (4 1) (3 3) (6 1)) (3 (1 4) (3 5) (4 3) (6 1) (5 1)) (4 (1 1) (3 2) (4 3) (5 2) (6 1)) (5 (1 1) (3 1) (4 1)) (6 (2 3) (1 2) (3 1) (5 1))) 10 20 3 :add-weight 3)) :point-radius 0 :style :fill) (setq integers (replace-map '((5 -5) (1 0) (2 6) (3 14) (4 20) (6 25)) integers)) |# ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;gen an example-score;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (def-score example (:key-signature 'chromatic :time-signature '(4 8) :tempo '(e 176) :layout (bracket-group (piano-grand-layout 'piano))) (piano :omn (make-omn :pitch (eliminate-repetitions (integer-to-pitch integers)) :length (gen-length (count-repetitions integers) 1/32)) :sound 'gm-piano))
10. ## collatz => gen-sequence + collatz-transition

https://en.wikipedia.org/wiki/Collatz_conjecture ;;experiment with COLLATZ-conjecture ;;https://en.wikipedia.org/wiki/Collatz_conjecture (defun collatz (start-value number-of-value) (loop repeat number-of-value with value = start-value when (evenp value) do (setq value (/ value 2)) else do (setq value (+ (* 3 value) 1)) collect value)) (list-plot (collatz 15 20) :zero-based t :point-radius 2 :join-points t) ;;;;;;;;;;;; ;;same function like fibonacci-transition but now with COLLATZ. ;;don't know if that makes sense - just a bit code :-) (defun transition-with-collatz (number-of-values start-val value-a value-b) (let ((coll-length) (coll-seq) (all-seq)) (setq coll-length (loop for cnt = 1 then (incf cnt) collect (sum (collatz start-val cnt)) into bag when (> (car (last bag)) number-of-values) do (return (1- (length bag)))) coll-seq (collatz start-val coll-length) all-seq (append (reverse coll-seq) (loop repeat (- number-of-values (sum coll-seq)) collect 1))) (loop for i in all-seq append (loop repeat i for cnt = 0 then (incf cnt) when (= cnt 0) collect value-b else collect value-a)))) ;;example-1 => only the process => makes sense when using a lot of values... (list-plot (transition-with-collatz 500 56 1 2) :zero-based t :point-radius 2 :join-points t)
11. ## transition with fibonacci

;;little function to make a transition by FIBONACCI-seq ;;i have seen this idea in "slippery chicken" (by michael edwards), ;;so here is a - "not so smart" but working - basic-function. (defun transition-with-fibonacci (number-of-values value-a value-b) (let ((fib-length) (fib-seq) (all-seq)) (setq fib-length (loop for cnt = 1 then (incf cnt) collect (sum (fibonacci 2 cnt)) into bag when (> (car (last bag)) number-of-values) do (return (1- (length bag)))) fib-seq (fibonacci 2 fib-length) all-seq (append (reverse fib-seq) (loop repeat (- number-of-values (sum fib-seq)) collect 1))) (loop for i in all-seq append (loop repeat i for cnt = 0 then (incf cnt) when (= cnt 0) collect value-b else collect value-a)))) ;;example-1 => only the process (transition-with-fibonacci 70 1 2) ;;example-2 => with context = sequence with 1 or 2 (before/after transition) (list-plot (append (gen-repeat 10 1) (transition-with-fibonacci 32 1 2) (gen-repeat 10 2)) :zero-based t :point-radius 2 :join-points t)

now edited!
13. ## another markov game

you are right, sorry. no computer with me... think you could replace filter-first-last by: (car (last list))
14. ## count-repetitions

don't konw if something like this exists in ONE function... could be useful!! andré (defun count-repetitions (value-list) (let ((seq (append value-list (list 'nil)))) (loop repeat (1- (length seq)) with count = 1 for cnt1 = 0 then (incf cnt1) for cnt2 = 1 then (incf cnt2) when (equal (nth cnt1 seq) (nth cnt2 seq)) do (incf count) when (not (equal (nth cnt1 seq) (nth cnt2 seq))) collect count and do (setq count 1)))) (count-repetitions '(1 1 2 2 2 3 4 4 1)) (count-repetitions '(abc bc a a a a bc))
15. ## another markov game

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;another little markov-game => markov with "global-tendency" ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;a "neutral table with 4 values" (setq transitions '((1 (1 1) (2 1) (3 1) (4 1)) (2 (1 1) (2 1) (3 1) (4 1)) (3 (1 1) (2 1) (3 1) (4 1)) (3 (1 1) (2 1) (3 1) (4 1)) (4 (1 1) (2 1) (3 1) (4 1)))) ;;;subfunctions (defun filter-first-last (n sequence) (car (filter-last n sequence))) (defun substitute-transition-weight (transition-list value new-weight) (loop for j in transition-list collect (append (list (first j)) (loop repeat (1- (length j)) for cnt = 1 then (incf cnt) when (equal (first (nth cnt j)) value) collect (list (first (nth cnt j)) new-weight) else collect (nth cnt j))))) ;;;mainfuction (defun markov-with-tendency (transitions size generations value) (loop repeat generations with list = (gen-markov-from-transitions transitions :size size :start 1) with weight = 1 with weight-add = 0 do (setq transitions (substitute-transition-weight transitions value weight)) append (setq list (gen-markov-from-transitions transitions :size size :start (filter-first-last 1 list))) do (incf weight (incf weight-add)))) ;;;some simulations => evaluate!!! (list-plot (markov-with-tendency transitions 10 20 1) :point-radius 0 :style :fill) (list-plot (list (markov-with-tendency transitions 10 20 1) (markov-with-tendency transitions 10 20 2) (markov-with-tendency transitions 10 20 4)) :point-radius 0 :style :fill) (list-plot ;;non-neutral-table (markov-with-tendency '((1 (1 1) (2 4)) (2 (1 1) (4 1)) (3 (1 4) (3 5) (4 3)) (3 (1 1) (2 4) (3 2)) (4 (1 1) (3 2) (4 3))) 10 20 1) :point-radius 0 :style :fill)
16. ## a little markov game

;;; little markov-game: ;;; gen-markov => analyze the output => produce new rules => gen-markov ;;; make x-times the list-plot and you will see how the system most of the times ;;; comes to a "constant STATE" (defun self-analyzing/generating-markov (transitions size generations) (loop repeat generations with list = (gen-markov-from-transitions transitions :size size :start 1) append (setq list (gen-markov-from-transitions (gen-markov-transitions list) :size size :start (car (last list)))))) ;;; a "neutral table with 4 values" (setf transition-table '((1 (1 1) (2 1) (3 1) (4 1)) (2 (1 1) (2 1) (3 1) (4 1)) (3 (1 1) (2 1) (3 1) (4 1)) (3 (1 1) (2 1) (3 1) (4 1)) (4 (1 1) (2 1) (3 1) (4 1)))) ;;; evaluate a few times and have a look on the output (list-plot (self-analyzing/generating-markov transition-table 20 20) :point-radius 0 :style :fill)
17. ## substitute markov transition-weight

;;; little program to change markov-weight for a specific value ;;; to give markov a "rule-tendency" (setq transitions '((a (b 1) (c 3) (d 2) (e 1)) (b (a 2) (d 3)) (c (a 2) (e 1) (b 3)) (d (c 2) (b 1) (a 3)) (e (a 2) (b 2) (d 1)))) (defun substitute-transition-weight (transition-list value new-weight) (loop for j in transition-list collect (append (list (first j)) (loop repeat (1- (length j)) for cnt = 1 then (incf cnt) when (equal (first (nth cnt j)) value) collect (list (first (nth cnt j)) new-weight) else collect (nth cnt j))))) (substitute-transition-weight transitions 'a 100) ;;; example for "concrete use" (loop repeat 20 with transitions = '((a (b 3) (c 3) (a 2)) (b (a 2) (b 3) (c 5)) (c (a 2) (c 1))) with weight = 1 do (setq transitions (substitute-transition-weight transitions 'a weight)) do (incf weight 2) collect (gen-markov-from-transitions transitions :size 20 :start 'a)) best wishes andré
18. ## code gen-sieves

looking forward to next release!
19. ## code pick-sample-from-center

if you want to pick a sample from approx.center (depends on odd/even) of a list... (defun pick-sample-from-center (list span) (let ((center (if (evenp (length list)) (/ (length list) 2) (/ (1+ (length list)) 2))) (span (if (> span (length list)) (length list) (append span)))) (loop repeat span with startpoint = (if (evenp span) (- center (/ span 2)) (- center (/ (1+ span) 2))) for i = startpoint then (incf startpoint) collect (nth i list)))) ;;;EXAMPLES: (pick-sample-from-center '(1 2 3 4 5 4 3 2 1) 7) => (2 3 4 5 4 3 2) (pick-sample-from-center '(1 2 3 4 5 4 3 2 1) 3) => (4 5 4) (pick-sample-from-center '(1 2 3 4 5 4 3 2 1) 6) => (3 4 5 4 3 2) (pick-sample-from-center '(1 2 3 4 5 4 3 2 1) 20) ; (if (> span length) => input-list as output => (1 2 3 4 5 4 3 2 1)
20. ## L-SYSTEMS / Hanspeter Kyburz

here's a link to a small article (in german) about HANSPETER KYBURZ's kind of L-SYSTEM-implementation... http://www.eresholz.de/de/text/Eres Holz_Ausschnitt aus der Masterarbeit.pdf

kind of transposing.... in ONE function... (defun adjust-pitch-sequence (pitch-sequence pitch1 pitch2) (pitch-transpose (car (pitch-to-interval (list pitch1 pitch2))) pitch-sequence)) ;;;'b3 (and all around) will be transposed to 'a6 (adjust-pitch-sequence '(c3 b3 a4 g1) 'b3 'a6) => (bb5 a6 g7 f4) here a simple self-similarity-example - but it's not for what i coded it.. (setq seq '(c3 b3 a4 g2)) (loop for i in seq collect (adjust-pitch-sequence seq 'c3 i))
22. ## code gen-sieves

further XENAKIS-sieve-functions could be with the AND/OR/NOT inside... see: "formalized-music" or: https://www.youtube.com/watch?v=mHUkSf4aZ3E
23. ## code gen-sieves

nice :-) i have a lot of extra function on SYMMETRIES in my USER-library, it's a part of my momentary project - chained-symmetries - symmetries based on markov - shifted symmetries ..................................................
24. ## code gen-sieves

of course...i knew that... but: yours is not with AMBITUS and not with complex-sieves, and not in ONE function. and, as all the time, i wanted to do it for myself.
25. ## code gen-sieves

have fun! andré ;;; TWO SIEVE-generators ;;; simple and multiple (the simple-function is part of multiple) ;;;;;;;;;;;;;;;;;;;;;;;;; (defun gen-sieve (ambitus.omn intervals) (midi-to-pitch (loop with ambitus.midi = (pitch-to-midi ambitus.omn) with interval.cnt = -1 for pitch = (first ambitus.midi) then (setq pitch (+ (nth interval.cnt intervals) pitch)) when (<= pitch (second ambitus.midi)) collect pitch into bag else return bag do (incf interval.cnt) when (= interval.cnt (length intervals)) do (setq interval.cnt 0)))) (gen-sieve '(c4 g7) '(2 1)) ;;;;;;;;;;;;;;;;;;;;;;;;; (defun gen-multiple-sieve (sieve-rules) ;sieve-rules => '((ambitus.omn intervals) (ambitus.omn intervals) (ambitus.omn intervals)) (midi-to-pitch (sort (remove-duplicates (loop for i in sieve-rules append (pitch-to-midi (gen-sieve (first i) (second i))))) #'<))) (gen-multiple-sieve '(((c4 g7) (2 1 12)) ((c1 g7) (3 5))))
×
• #### Browser

• Video Gallery

• Lessons